If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8n^2+6n-2700=0
a = 8; b = 6; c = -2700;
Δ = b2-4ac
Δ = 62-4·8·(-2700)
Δ = 86436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{86436}=294$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-294}{2*8}=\frac{-300}{16} =-18+3/4 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+294}{2*8}=\frac{288}{16} =18 $
| 24x=+12 | | 15=10(-1)+5y | | 15=10(-2)+5y | | 1/3(21-3x)=1/8(8-4x) | | 2.1x+625=4.41+25x | | -3(x+4)+4=7(x+3)+4 | | 3y=12-2(6) | | r/16+6=17 | | 3y=12-2(0) | | 5x - 13 = 4(2x - 5) | | 8(8n+4)=416 | | 3y=12-2(-6) | | 3y=12-2(-12) | | -2(4x-4)+8=-8x+16 | | 3y=12-2-12 | | 2(0)-8=4y | | -3(5-9v)=7v | | 12/3x=9 | | 6m+3=18 | | 0.8(10x+18)=4.2(0.2x+5) | | -8n^2+50n+42=0 | | 2b^2+6b+2=0 | | (5z-6)(5+z)=0 | | 7−4t−5+t=0 | | 14a+3=19 | | X=1-3y/y | | 43772/234x=2345 | | 2p+3=15+3p+4-8 | | 28x-63=26+6x | | 5a^2+40a=0 | | 24+900x=293x+29093 | | 4x-6x=-3x-4 |